Biden wants an industrial renaissance. He can’t do it without immigration reform.

But those subsidies, as well as new tax credits for the chip industry, were finally sent to Biden’s desk in late July. Intel isn’t the only company that’s promised to supercharge US projects once that money comes through — Samsung, for example, is suggesting it will expand its new $17 billion chip plant outside of Austin, Texas, to a nearly $200 billion investment. Lawmakers are already touting the subsidies as a key step toward an American renaissance in high-tech manufacturing.

Quietly, however, many of those same lawmakers — along with industry lobbyists and national security experts — fear all the chip subsidies in the world will fall flat without enough highly-skilled STEM workers. And they accuse Congress of failing to seize multiple opportunities to address the problem.

STEM help wanted

In Columbus, just miles from the Johnstown field where Intel is breaking ground, most officials don’t mince words: The tech workers needed to staff two microchip factories, let alone eight, don’t exist in the region at the levels needed.

“We’re going to need a STEM workforce,” admitted John Husted, Ohio’s Republican lieutenant governor.

But Husted and others say they’re optimistic the network of higher ed institutions spread across Columbus — including Ohio State University and Columbus State Community College — can beef up the region’s workforce quickly.

“I feel like we’re built for this,” said David Harrison, president of Columbus State Community College. He highlighted the repeated refrain from Intel officials that 70 percent of the 3,000 jobs needed to fill the first two factories will be “technician-level” jobs requiring two-year associate degrees. “These are our jobs,” Harrison said.

Harrison is anxious, however, over how quickly he and other leaders in higher ed are expected to convince thousands of students to sign up for the required STEM courses and join Intel after graduation. The first two factories are slated to be fully operational within three years, and will need significant numbers of workers well before then. He said his university still lacks the requisite infrastructure for instruction on chip manufacturing — “we’re missing some wafer processing, clean rooms, those kinds of things” — and explained that funding recently provided by Intel and the National Science Foundation won’t be enough. Columbus State will need more support from Washington.

“I don’t know that there’s a great Plan B right now,” said Harrison, adding that the new facilities will run into “the tens of millions.”

A lack of native STEM talent is not unique to the Columbus area. Across the country, particularly in regions where the chip industry is planning to relocate, officials are fretting over a perceived lack of skilled technicians. In February, the Taiwanese Semiconductor Manufacturing Corporation cited a shortage of skilled workers when announcing a six-month delay in the move-in date for their new plant in Arizona.

“Whether it’s a licensure program, a two-year program or a Ph.D., at all levels, there is a shortfall in high-tech STEM talent,” said Phillips. The NSB member highlighted the “missing millions of people who are not going into STEM fields — that basically are shut out, even beginning in K-12, because they’re not exposed in a way that attracts them to the field.”

Industry groups, like the National Association of Manufacturers, have long argued that a two-pronged approach is necessary when it comes to staffing the high-tech sector: Reevaluating immigration policy while also investing heavily in workforce development

The abandoned House and Senate competitiveness bills both included provisions that would have enhanced federal support for STEM education and training. Among other things, the House bill would have expanded Pell Grant eligibility to students pursuing career-training programs.

“We have for decades incentivized degree attainment and not necessarily skills attainment,” said Robyn Boerstling, NAM’s vice president of infrastructure, innovation and human resources policy. “There are manufacturing jobs today that could be filled with six weeks of training, or six months, or six years; we need all of the above.

But those provisions were scrapped, after the Senate leadership decided a conference between the two chambers on the bills was too unwieldy to reach an agreement before the August recess.

Katie Spiker, managing director of government affairs at the National Skills Coalition, said the abandoned Pell Grant expansion shows Congress “has not responded to worker needs in the way that we need them to.” Amid criticisms that the existing workforce development system is unwieldy and ineffective, the decision to scrap new upgrades is a continuation of a trend of disinvesting in workers who hope to obtain the skills they need to meet employer demand.

“And it becomes an issue that only compounds itself over time,” the Speaker said. “As technology changes, people need to change and evolve their skills.”

“If we’re not getting people skilled up now, then we won’t have people who are going to be able to evolve and skill up into the next generation of manufacturing that we’ll do five years from now.”

Congress finally sent the smaller Chips and Science Act — which includes chip subsidies and tax credits, $200 million to develop a microchip workforce and a slate of R&D provisions — to the president’s desk in late July. The bill is expected to enhance the domestic STEM pool (at least on the margins). But it likely falls short of the generational investments many believe are needed.

“You could make some dent in it in six years,” said Phillips. “But if you really want to solve the problem, it’s closer to a 20-year investment. And the ability of this country to invest in anything for 20 years is not phenomenal.”

Immigration Arms Race

The microchip industry is in the midst of a global reshuffling that’s expected to last a better part of the decade — and the US isn’t the only country rolling out the red carpet. Europe, Canada, Japan and other regions are also worried about their security, and preparing sweeteners for microchip companies to set up shop in their borders. Cobbling together an effective STEM workforce in a short time frame will be key to persuading companies to choose America instead.

That will be challenging at the technician level, which represents around 70 percent of workers in most microchip factories. But those jobs require only two-year degrees — and over a six-year period, it’s possible a sustained education and recruitment effort can produce enough STEM workers to at least keep the lights on.

It’s a different story entirely for Ph.Ds and master’s degrees, which take much longer to earn and which industry reps say make up a smaller but crucial component of a factory’s workforce.

Gabriela González, Intel’s head of global STEM research, policy and initiatives, said about 15 percent of factory workers must have doctorates or master’s degrees in fields such as material and electrical engineering, computer science, physics and chemistry. Students coming out of American universities with those degrees are largely foreign nationals — and increasingly, they’re graduating without an immigration status that lets them work in the US, and with no clear pathway to achieving that status.

Leave a Comment

Your email address will not be published.